
Basis transformations in generation space and a criterion for the existence of standard forms

for unitarily congruent matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 2825

(http://iopscience.iop.org/0305-4470/21/12/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) 2825-2833. Printed in the U K  
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Abstract. Basis transformations for fermion generations lead to a consideration of matrix 
transformations of the type U'AU with unitary U. It is shown that A can be brought to 
a certain standard form iff A and AT are simultaneously diagonalisable by a biunitary 
transformation. Application of this theorem allows for a standardisation of Yukawa 
couplings. 

1. Motivation 

The fermionic constituents of matter appear to be grouped in families or generations. 
In the framework of gauge theories, generations are equivalent representations of the 
gauge group under consideration. In general, a given generation consists of several 
inequivalent irreducible representations (irreps). For instance, in the standard model 
of electroweak interactions (Glashow 1961, Weinberg 1967, Salam 1968) a lepton 
family consists of a doublet and a singlet of SU(2), whereas a quark generation contains 
a doublet and two singlets, the singlets being distinguished by different U( 1) quantum 
numbers. Although not really necessary for the following discussion, we restrict 
ourselves to the case of complete generations where each family has the same number 
of fermionic degrees of freedom. 

The interactions of fermions with gauge fields are identical for each generation. 
In a gauge-invariant renormalisable Lagrangian quantum field theory the generation 
symmetry can only be broken by Yukawa couplings to scalar fields. Taking for 
convenience of notation all fermions as left-handed Weyl spinor fields, the Yukawa 
interaction has the general form 

Ty= $!JHlc-'rKab$!Jt , ,@r+HC 1 i, j nG . (1.1) 

The multiplet @ contains all scalar fields in the theory, C is the Dirac charge conjugation 
matrix, nG denotes the number of generations and a, b, r label the gauge group 
representations. Because of Fermi statistics the Yukawa couplings satisfy the symmetry 
relation 
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A basis transformation in generation space consists of a set of unitary transforma- 
tions acting on the generations, one for each irrep in a family. The gauge-invariant 
kinetic terms of the fermions are invariant under such a transformation, but the Yukawa 
Lagrangian (1.1) is modified. The Yukawa couplings connecting two irreps $kl’, $g’ 
are transformed into 

where U(’) ,  U ( 2 )  are the unitary basis transformations for 4“) and $@), respectively. 
Specialising to the case $(” = I)”’, we find that (1.3) is of the form 

a =  UTAU (1.4) 

with unitary U, i.e. the matrices A and a are unitarily congruent to each other?. 
The same unitary congruence arises in the discussion of generalised CP and T 

transformations (Ecker eta1 1987) where A is now unitary. The example of time 
reversal suggests another application of (1.4): it governs, in fact, the transformation 
of a general antilinear mapping A under a change of basis implemented by U. 

Unitary congruence occurs much less frequently both in physics and mathematics 
than unitary similarity 

A ’ =  UtAU.  (1.5) 

The purpose of the present investigation is to establish an analogue to the well known 
theorem that A can be diagonalised by a unitary similarity transformation (1.5) iff A 
is normal. For the case of unitary congruence, only partial results seem to be known. 

(i) If A is symmetric it can be brought to diagonal, positive semi-definite form 
(Schur 1945). 

(ii) A unitary matrix A can be block-diagonalised by a congruence transformation 
(1.4) where each block is either a real orthogonal 2 x 2 matrix or the unit matrix of 
arbitrary dimension (Ecker er al 1987). 

The generalisation of these results to be formulated as a theorem in 0 2 will involve 
the notion of simultaneous diagonalisability of A and AT through a biunitary transfor- 
mation. In general, a set of square matrices { A , ,  . . . , A N }  is said to be simultaneously 
diagonalisable by a biunitary transformation if there exist unitary matrices U, V such 
that UtA,V are diagonal for all i = 1, . . . , N. At first sight, the requirement of simul- 
taneous diagonalisability of A and AT seems to be much more difficult to verify than 
the corresponding requirement of normality of A in the case of similarity. However, 
the task is greatly facilitated by the following theorem (Sartori 1979, Gatto et a1 1980, 
Grimus and Ecker 1986): the set { A , ,  . . . , A N }  is simultaneously diagonalisable by a 
biunitary transformation iff the sets SI = {A:A,} lJ=l ,  ,N and S2 = {A,AJ} ,J=l ,  ,N are 
Abelian. If at least one of the matrices A, is non-singular it is actually sufficient to 
check if either SI or S,  are Abelian (Grimus and Ecker 1986). In the present case of 
simultaneously diagonalisable A and AT the sets S, and S2 are complex conjugates of 
each other so it is again sufficient to investigate either one of them. 

The previously known cases of symmetric or unitary A come as special cases under 
the general requirement of simultaneous bidiagonalisability of A and AT. This is 
obvious for A T =  A because any matrix can be biunitarily diagonalised. It is also true 
for At = A-’ because any two unitary matrices are simultaneously bidiagonalisable as 
a straightforward application of Sartori’s theorem shows. The basic assumption is also 

t All matrices in this paper are square matrices over the field of complex numbers. 
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fulfilled for an antisymmetric matrix A, which will be relevant for the discussion of 
Yukawa couplings in § 3. 

Independently of these special applications, we want to emphasise once again that 
the theorem of Q 2 can be viewed as the analogue of the unitary diagonalisability of 
normal linear mappings in the case of antilinear mappings. 

2. Unitary congruence and standard forms 

Theorem. Let A be a complex n x  n matrix. Then A and AT are simultaneously 
diagonalisable by a biunitary transformation iff there exists a unitary n x n matrix U 
such that 

UTAU = block-diag(B, , . . . , Bk, C)  (2.1) 

with 2 x 2  matrices Bi(i = 1, .  . . , k )  of the form 

Bi = ( .' ai) 
elVlbi 0 

a, > 0 b, 3 0 OS(p ,ST  a, f b, for cp, = 0 

and with a positive semi-definite diagonal I x I matrix C = diag( c,, . . ., cI ) .  
Before proving the theorem we want to make a few remarks. 
(i) The real numbers a,, b,, cpt and c, can be obtained from the eigenvalues 

a f , b ;  ( i = l ,  . . . ,  k )  c,' ( j = l ,  . . . ,  l )  

of AAt and from the eigenvalues 

a,b,e*'*p' ( i  = 1, . . . , k )  c,' ( j =  1 , .  . . , 1 )  

of AA*. Note that in view of Sartori's theorem the simultaneous bidiagonalisability 
of A and AT implies that AA* is normal and therefore diagonalisable by a unitary 
similarity transformation. 

(ii) For a, = 6, an equivalent standard form for B, is given by 

cos tcpi sin ;pi 

-sin $pi cos $pi 
i 7 T ~ ~ f i ~  = ai 

with 

(2.3) 

(2.4) 

In particular, this case is realised for unitary A. From (2.3) it is also clear that for 
ai = b, and cpi = 0 the matrix Bi can be diagonalised and put into C. This explains the 
exclusion in (2.2). 

Roo$ Multiplying (2.1) and the transposed equation by a block-diagonal unitary 
matrix either from the left or from the right, with k blocks of two-dimensional 
permutation matrices and an /-dimensional unit matrix, immediately shows that A and 
AT are simultaneously diagonalisable by a biunitary transformation. 
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Proving the opposite implication is more involved. By assumption, there exist 

W+AV= D (2.5a) 

W'A'V = D' (2.5b) 

with diagonal D, D'. Without loss of generality, D can be taken real and positive 
semi-definite. Defining a unitary matrix 

unitary matrices V ,  W such that 

s= VTW ( 2 . 6 )  

one easily derives the relations 

D' = SDS* (2.7a) 

DD'* = Sr DD'S. (2.76) 

Consequently, for every eigenvalue A of DD' also A *  is an eigenvalue. The same is, 
of course, valid for AA* = WDD'* W'. 

Assuming p different complex eigenvalues A, ( a  = 1 , .  . . , p )  of AA* with O <  
arg A, =: < T and q real eigenvalues A,(a = p  + 1 ,  , . . , p + q = n - p )  we can write 

DD'*=diag(AIl,,, A T l m , ,  a ,  Aplmp, Aflm,, Ap+l1mp+,, . . ., hp+qlm,+,) (2.8) 

with m, the multiplicity of A, and 1" the ma-dimensional unit matrix. From (2.7b) 
and (2.8) it follows that S has the form 

s=l 0 

Sb 
S P  

0 (2.9) 

with all S ,  and S &  being m, x m, unitary matrices. 
Expressing the A, by D and S and removing V from (2.5a) we get 

DD'* = DS* DS (2.10) 

WtA W* = DS*. (2.1 1 )  

and 

These two equations will now be discussed separately for each A, in view of (2.8) and 
(2.9). 

Let us first consider a complex A,. In this case (2.10) is 

where D, is the corresponding part of D. With the notation 

(2.12) 

(2.13) 
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with diagonal and positive E,, F,, (2.12) can be written in the form? 

S &  = e'**F,S%E, (2.14) 

S ,  = e-''=E,S&TF,. (2.15) 

Eliminating S &  leads to the relation 

s, = EZ,S,FZ, (2.16) 

so that E, and F;' have the same spectrum. By a permutation of basis vectors in the 
cy sector we can always achieve 

F, = E ; ' ,  (2.17) 

Moreover, (2.16) implies 

Ea3iiFasjj = 1 (2.18) 

# 0. Equation (2.18) together with either (2.14) 

S &  = e'*=S:, (2.19) 

for any pair of indices of i , j  with 
or (2.15) then give rise to the matrix equation 

Therefore, we have 

We can now perform a transformation of the required type with 

to obtain finally 

(2.20) 

(2.21) 

(2.22) 

Keeping in mind equation (2.11), the last equation is already of the desired form (2.1) 
a n 1 2 . 2 )  up to a trivial rearrangement of the basis. T h e  ai are to be identified with 
J ~ A , ~ E ; '  and the complex numbers e''zbi with e'*-JlA,lE, completing the proof for 
complex eigenvalues of AA*. 

For a negative eigenvalue A, (2.10) yields 

S: = -D,S,D,/lA,l. (2.23) 

With similar arguments as in the case of complex A,, (2.23) is shown to imply 

s: = -s, (2.24) 

and 

(2.25) 

t Actually, (2.14) and (2.15) can be shown to be equivalent. 
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-1 0 
U:( DS*), U, = Jm 

0 dlelpla 
-d;:LIm 0 

Since S, is non-singular the multiplicity of a negative eigenvalue of AA* must be even. 
Furthermore, D, can be written as 

De =Jl4 diag(lpom, dl , lplo,  d;:lpla,. * * )  pOa even diu > 1 (2.26) 

and S, must have the form 

- 

(2.29) 

Ti ,  = - To,. (2.27) 

Applying lemma 1 of the appendix to the matrix To, we can find a unitary matrix t, 
such that 

(2.28) 

6, 0 
. -= (o  0) 

(2.32) 

with a positive r-dimensional diagonal matrix E,, one finds that S, must have the form 

(2.33) 

with an r x r zero matrix and r x s, s x r, s x s matrices SI2, S 2 , ,  S Z 2 ,  respectively 
( r  + s = ma). Because of the unitarity of S, the rows of S,2  form an orthonormal set 
of r s-dimensional vectors so that necessarily r s s. Denoting the rows of SI2 as 
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uf, . . . , u: with column vectors vp ( p  = 1, .  . . , r )  we can find vectors v , + ~ ,  
make { u l ,  . . . , v,} an orthonormal basis of C'. Then the matrix 

T =  (10' ( V I , .  O )  . . , U,) 
is unitary and 

2831 

. . , U, to 

(2.34) 

(2.35) 

with (Em, 0) forming an r x s matrix. In this case, there are r matrices Bi in (2.1) and 
(2.2) with bi = 0 and a zero in the diagonal matrix C with multiplicity s - r. 

The remaining case A, > 0 can be discussed in close analogy to A, < O .  The 
corresponding matrix Tom is now symmetric. Lemma 2 of the appendix furnishes a 
unitary symmetric matrix t, with t,To,t, = lwoa. Therefore, the poa elements & of 
D, contribute to the diagonal matrix C whereas the rest yields matrices Bi with cpi = 0. 
This concludes the proof of the theorem. 

3. Yukawa couplings 

Following the original motivation in § 1, we shall now apply the theorem of the previous 
section to the Yukawa couplings of a given scalar irrep to a corresponding irreducible 
fermionic bilinear. More precisely, we consider a certain irreducible part of the total 
Yukawa Lagrangian of the form 

(3.1) 9 1 r r  y - - $ ~ " r y a b $ ~ ~ ) @ . '  + HC 

where $!IJ, $)" and @ are all irreps, the fermionic irreps being identical for all 
generation indices i and j ,  respectively. Moreover, $!') and $j2' are assumed to give 
rise to the same irreducible fermionic bilinear for all i, j .  In this case 

r ; a b =  cr,abYy (3.2) 

where c,,ab are the Clebsch-Gordan coefficients for projecting? out of $'"x $(2)  the 
irrep complex conjugate to 0. In many cases, the relation (3.2) is automatically 
satisfied. Only when @* appears more than once in the Kronecker product $") x 
the additional assumption is needed. 

We can now formulate the following proposition for canonical Yukawa couplings. 

Proposition. For an irreducible Yukawa Lagrangian (3.1) one can always choose a 
basis in generation space such that the Yukawa coupling matrix y defined in (3.2) 
assumes a certain real standard form. Three cases must be distinguished. 

(i)  For $ ' I )  # $('), y can be made diagonal and positive semi-definite. 
(ii) If $ ( I )  = $(*' and if @* is in the symmetric Kronecker product ($ x y can 

again be made diagonal and positive semi-definite. 

t We use the same letters for fields and irreps. 
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(iii) With $ ( ' I =  I+/I(~) and @* contained in the antisymmetric Kronecker product 
(4  x $)*, y can be transformed to block-diagonal form 

y = block-diag( B 1 ,  . . . , Bk,  0) (3.3) 

with 

Bi = ( " i )  b i E  R. 
-b; 0 

Case (i) is due to the fact that any complex matrix can be brought to diagonal, 
positive semi-definite form by a biunitary transformation. Parts (ii) and (iii) are 
immediat'e consequences of the theorem of § 2, recalling (1.2) and the symmetry or 
antisymmetry in a, 6, respectively of the Clebsch-Gordan coefficients c @ , .  

The above proposition implies in particular that all phases in the Yukawa couplings 
y,, can be rotated away for an irreducible Yukawa Lagrangian (3.1). Thus, the CP 
properties of LE! are determined by the Clebsch-Gordan coefficients c,,,b only. Of 
course, the complete Yukawa Lagrangian will not be irreducible in general. 

Canonical Yukawa couplings may be of advantage to determine the number of 
relevant parameters of the theory. The freedom of performing basis transformations 
in generation space prior to spontaneous symmetry breaking introduces redundant 
parameters without physical significance. As an illustrative example, we consider an 
SU(2)L x U(1) model for neutrino masses (Zee 1980) where the lepton doublets interact 
with a singlet scalar field. Coupling two doublets to a singlet requires antisymmetric 
Clebsch-Gordan coefficients and thus antisymmetric Yukawa couplings yg.  Referring 
to (3.3), we observe that of the original nG( nG - 1)/2 complex Yukawa couplings only 
[nG/2] real parameters remain in a canonical basis where [nG/2] stands for the largest 
integer not exceeding n,/2. For instance, for nG = 3 the three complex couplings are 
reduced to a single real parameter. More generally in the case of antisymmetric Yukawa 
couplings, one can always find a basis for nG odd where at least one generation 
decouples. Moreover, the canonical form of Yukawa couplings makes it rather easy 
to determine all remaining basis transformations leaving the canonical form unchanged. 
Taking again the Zee model for nG = 3 as an example, the Yukawa coupling matrix 

(3.4) 

is unchanged iff the basis transformation is of the form 
eim cos 6 eip sin 6 

sin 6 e-" cos 6 
0 

(3.5) 

In other words, the two generations coupling to the singlet scalar field can still be 
subjected to an almost arbitrary unitary transformation. This rotation can be used to 
reduce the number of relevant parameters in the Yukawa couplings of other scalar fields. 
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Appendix 

Lemma 1. Let S be a unitary antisymmetric n x n matrix. Then there exists a unitary 
matrix T such that 

Prooj S can be written as S = SI + is2 with real and antisymmetric Si. From unitarity 
we have 

I = S + S = - S : - S : - ~ [ S , ,  s,]. (A21 

Consequently [SI, S,] = 0 and there is an orthogonal matrix 0 such that 

for both i = 1 ,  2 ( n  must be even!). Since S is unitary we obtain 

la2’+iah2’j = 1 (a = 1 , .  . . , n / 2 ) .  (A41 

Therefore, there exists a diagonal phase matrix P such that T = OP. 

Lemma 2. Let S be a unitary symmetric matrix. Then there exists a unitary symmetric 
matrix T with S =  T2 .  

Prooj We can write S = SI + i s 2  with Si real and symmetric. As before, it follows from 
unitarity that SI and S2 commute and can therefore be diagonalised simultaneously 
by an orthogonal matrix 0. Then P:= OTSO is a diagonal phase matrix and T is 
obtained as T = O 0 O T .  
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